2007年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2007

学科試験 問題

EXAMINATION QUESTIONS

(専修留学生)

SPECIAL TRAINING COLLEGE STUDENTS

数 学

MATHEMATICS

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

(2007)

MATHEMATICS

Nationality No. (Please print full name, underlining family name) Name

Marks

Fill in the following blanks with the correct answers.

(1) When $\frac{a+b}{4} = \frac{b+c}{5} = \frac{c+a}{6}$, then ratio a:b:c=1:

2

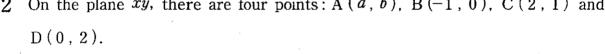
(2) When $a = 3 + 2\sqrt{2}$ and $b = 3 - 2\sqrt{2}$, then $a^2 + b^2 = \boxed{1}$

 $\frac{a^2}{b} + \frac{b^2}{a} = \boxed{2}$

- (3) $\cos 30^{\circ} \sin 45^{\circ} \tan 60^{\circ} + \cos 135^{\circ} \sin 120^{\circ} \tan 150^{\circ} =$
- The solutions of an equation $(x+1)^2 + 9(x+1) + 20 = 0$ are

1 and 2

(5) When the range of x determined by $-ax^2 + bx + 4 \ge 0$ is $-\frac{1}{3} \le x \le 4$,


then $a = \boxed{1}$ and $b = \boxed{2}$

- When a = 3 and b = 2, then $\log_a b^a \times \log_b a^b =$
- (7) Let $f(x) = -x^2 2ax + b$ $(a \neq 0)$.

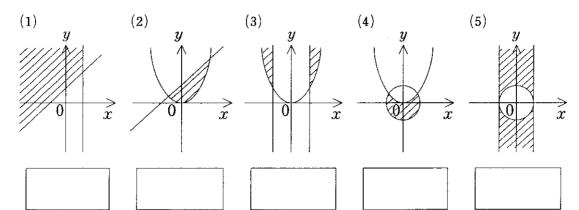
When f(1) = 3 and the maximum value of f(x) is 4,

 $b = \boxed{2}$ then $a = \boxed{1}$

(8) Let a sequence $\{a_n\}$: 2, 5, 8, 11,, a_n . If $a_n > 100$, the minimum value
of n is
(9) Let $f(x) = x^3 - 2x + 4$.
(i) $f(2) = $.
(ii) Differential coefficient $f'(2) = $.
(iii) If $f(x) = 0$, the real value of $x = $
(iv) The definite integral $\int_0^2 f(x) dx = $.
2 On the plane xy , there are four points: A(a , b), B(-1 , 0), C(2 , 1) and
D(0,2).
(1) If point D is the center of △ABC, then

(1)	п рош	ט וט	me c	emei	OX Z	∆ADC,	then	
								_
	a =				<i>b</i> =			

(3) If $\angle ABC = 90^{\circ}$ and point D is on the side AC, then


$$a = \boxed{$$
, $b = \boxed{ }$

(4) If vector $\overrightarrow{CA} = 2\overrightarrow{CB} - 3\overrightarrow{CD}$, then

(5) If scalar product $\overrightarrow{BA} \cdot \overrightarrow{BC} = -2$ and scalar product $\overrightarrow{BA} \cdot \overrightarrow{BD} = 1$, then

$$a = \boxed{$$
, $b = \boxed{ }$.

3 Choose two inequalities which represent the hatched area not containing the border, from $1 \sim 10$.

- ① x > 1

- ② x < 1 ③ |x| > 1 ④ |x| < 1 ⑤ y > x + 1

- 7 $y > x^2$ 8 $y < x^2$ 9 $x^2 + y^2 > 1$ 0 $x^2 + y^2 < 1$